Prolyl isomerase Pin1-mediated conformational change and subnuclear focal accumulation of Runx2 are crucial for fibroblast growth factor 2 (FGF2)-induced osteoblast differentiation.

نویسندگان

  • Won-Joon Yoon
  • Young-Dan Cho
  • Woo-Jin Kim
  • Han-Sol Bae
  • Rabia Islam
  • Kyung-Mi Woo
  • Jeong-Hwa Baek
  • Suk-Chul Bae
  • Hyun-Mo Ryoo
چکیده

Fibroblast growth factor 2 (FGF2) signaling plays a pivotal role in bone growth/differentiation through the activation of osteogenic master transcription factor Runx2, which is mediated by the ERK/MAPK-dependent phosphorylation and the p300-dependent acetylation of Runx2. In this study, we found that Pin1-dependent isomerization of Runx2 is the critical step for FGF2-induced Runx2 transactivation function. We identified four serine or threonine residues in the C-terminal domain of Runx2 that are responsible for Pin1 binding and structural modification. Confocal imaging studies indicated that FGF2 treatment strongly stimulated the focal accumulation of Pin1 in the subnuclear area, which recruited Runx2. In addition, active forms of RNA polymerase-II also colocalized in the same subnuclear compartment. Dipentamethylene thiuram monosulfide, a Pin1 inhibitor, strongly attenuated their focal accumulation as well as Runx2 transactivation activity. The Pin1-mediated structural modification of Runx2 is an indispensable step connecting phosphorylation and acetylation and, consequently, transcriptional activation of Runx2 by FGF signaling. Thus, the modulation of Pin1 activity may be a target for the regulation of bone formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional regulation of the human bone sialoprotein gene by fibroblast growth factor 2.

Fibroblast growth factor 2 (FGF2), a member of the FGF family, positively regulates bone formation and osteoblast differentiation. Bone sialoprotein (BSP) is highly expressed during early bone formation and may play a role in primary mineralization of bone. In the present study, FGF2 (10 ng/mL) was found to increase the levels of Runx2 and BSP mRNA at 3 and 12 h in human osteoblast-like Saos2 c...

متن کامل

Fibroblast growth factor-2 inhibits mineralization of osteoblast-like Saos-2 cells by inhibiting the functioning of matrix vesicles.

Fibroblast growth factor-2 (FGF2) inhibits osteoblast mineralization, but the mechanism by which it does so is not fully understood. Matrix vesicles (MVs) play an essential role in the initiation of mineralization, so the current study examined the effect of FGF2 on the functioning of MVs to investigate this mechanism. This study found that FGF2 significantly inhibited differentiation and miner...

متن کامل

Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-delta/Runx2-dependent mechanism.

In this study, we examine the role of the gap junction protein, connexin43 (Cx43), in the transcriptional response of osteocalcin to fibroblast growth factor 2 (FGF2) in MC3T3 osteoblasts. By luciferase reporter assays, we identify that the osteocalcin transcriptional response to FGF2 is markedly increased by overexpression of Cx43, an effect that is mediated by Runx2 via its OSE2 cognate eleme...

متن کامل

Involvement of Prolyl Hydroxylase Domain Protein in the Rosiglitazone-Induced Suppression of Osteoblast Differentiation

Rosiglitazone is a well-known anti-diabetic drug that increases insulin sensitivity via peroxisome proliferator-activated receptor γ (PPARγ) activation, but unfortunately it causes bone loss in animals and humans. A previous study showed that prolyl hydroxylase domain protein (PHD) plays a role in rosiglitazone-induced adipocyte differentiation. Based on the inverse relationship between adipocy...

متن کامل

Proteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation.

Microtubule inhibitor-induced Bcl2 phosphorylation is detrimental to its antiapoptotic function. Phosphorylation of Bcl2 predominantly occurs on two serine residues (70 and 87) in cells arrested at G2-M phase by microtubule disarraying agents. Phospho Bcl2 can associate with a cis-trans peptidyl prolyl isomerase, Pin1. Pin1 and its homologues are known to target the proline residue carboxyl ter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 13  شماره 

صفحات  -

تاریخ انتشار 2014